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ABSTRACT

The use of intrinsic random function stochastic models as a basis for

estimation in geostatistical work requires the identification of the general-

ized covariance function of the underlying process, and the fact that this

function has to be estimated from the data introduces an additional source of

error into predictions based on the model. This paper develops the sample re-

use procedure called the “bootstrap” in the context of intrinsic random

functions to obtain realistic estimates of these errors. Simulation results

support the conclusion that bootstrap distributions of functional of the

process, as well as of their “kriging variance”, provide a reasonable picture

of the variability introduced by imperfect estimation of the generalized

covariance function.

KEY WORDS: regional ized variables, kriging, interpolation, sample re-use,

nonparametric error estimates, confidence intervals.

-2-



Campbell BoaLsKrapDecl Moaels . DRAFT

INTRODUCTION

one of the most frequently cited Droblems WJtn the geostatlstlcal es-

timation technique Known as krlglng IS the necessity of using an estlmatea

mcael for the ccvarlanc~ function (semi-varlogram. qenerallzea covarlance

function]. TrIIs Droblem 1s alluaea tom for ●xam~le. by Pnlllp and uatson

(1986!. =no cite in Dartlcular earner work of Hardy [19771. and by Armstrong

(198~a). Gmong others work Dy Brooker (1986) ccincluaed that the krlglng

variance 1s ““roDus~ tG mGst errors llkely to De maae In semltiarlogram mcde 1

selectlon-- for the class Gf mGdels lncludea in nls Daranetrlc stuay and a par-

KICuldr regular blOCk-StImDle geOMetry, with the eXCePtlOn that lt coula be

aulte sensltlve to t~E lncGrrect cnolce of the nugget value. Dlamona ana

Armstrong (198dI aeflnea a m~~rlc on cne s~ace of .arlogram func~lon~ ana

~rcvlaed estlmdtes Cf ttiesra~lll~j of ~ne krlged estimates ana tne krlglng

Variance relatl~e to changes in the wariogram func~lcn as measurea ~J tnts

me~rl~ L~ tti~lr ~etrlc IS ~asea Cn th~ r~~le betseen t-c .arlogritnfUnc-

tlonsm less [aBsolUte! Varlablllty 1s allowed Wlthln a &nelgfibwhooa of a

given varlogram where tnat Varlogram 1s small. ana almost always lt 1s smal-

lest for seDaratlons near zero. trlls confirms tne sensl~lvlty of krlglng

results to the cnolce of nugget cBserVea bj Brooker

Motivated By this earner work. Khls Daper exDlores a technlaue for

auantlfjlng tne error resultlng frcm imperfect model estimation when Lhe only

a~ta at hana are the sample oBseruatlons Ulth the lncreaclng avallablllty of

nigh.s~eed com~uters. a number tjf computation-lntenslv~ . non-Darametrlc

mothoas for adaresslng this problem nave been dewOIODOd in the statistical

literature in recent years Tnese samDle-reuse methods. sucn as thO

“Jackknife . cross.walldatlon ana tne ‘-bootstra~- . are reviewed a~d comparea

Bj Efron (19821 AppllcatlOnS Irlgeostatlstlcs lnCludE Chung (19841. LMrule

(1983). CamDbell (19861 and 5G1OW (1985) This Daper exDdndS Gn thO prellrnl-

narY work of SG1OW (1985) aDDlylng the DootstraD. lntroducea DY Efron (19791.

to ●stimates of functlonals of a stationary random process
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INTRINSIC RANDGM FuNCT10F~5 AF4G KRIGING

ThIS Drlef r~vlew ~111 ser”e to Intrcduce the notatlm used in Ihls

Eat3er For dctalls the reader 1s referred tc the s~mlnal paD~r cf Mather@n

[19731 and the mor~ Gractlcal erpcsltlon BJ ~elflner [19791

The data. g ❑ z(x) ❑ [z[xl]. . , Z(IN)J. are samEIEs at known. fixed. .
Doln~s 1, of one realization 2(x1 of a stocnastlc Dr6ce5s Z(x). ~roDa~lllStlc

a~sumDtlons about Z(XJ maj Include Joint normallty of the random harlables

2(x) lficlexed by a sDaKlal variable x (ln a-almenslonal Eucllaean s~ace] or

som~ form of generallz~d statlonarity In tnls DaPer lt 1s assumea that Z 1s

an lfitrlns.c random fufictlofiof uraer k ik-IPF). whlcri means. flrSL. that (at

lEdst locall~) lKS arlft E(~IXJI 1S Eal:incjmltilin x of order k. ana secondlj.

that lf a 1s a measure with cotn~act sup~ort lfid-s~ace With the proBertJ that

fD[xlaalIJ =0

1s a stationary ranaom Droc:ss (lndexea Ey s in a-s~ace). Below only

measures u with flnlte suDport (“”k-increments --]are conslaereJ, and lt w1ll be

conwenlen~ t~ reDlace r-he integral notation of Eq [1] tilth tn inner Droduct

no~at Ion

Jz[t)aaltl - r q . ; ‘%f ; cl, :Itl).
1:1

where {tl. . . tT} cofitalns thesuE130rt ofa Seconcl moments of aZ ape

ucsumed to exist. but no exDllCIL norfnalltj assmrltlons are maae If a ana ~

are ~nj t-o k-increments. and {t]. tT} ~ontalns the Union of their

surf20rts then the co.arlance of the rdn(l@m varldbles C q . ~ ~ ana c g . Z =

1S given In terms af l~e a~nerallzca ‘o-arlance function K[hl of [he IRF ~

ideflned for hZOJ by
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, ~=1%f K[ltl-t l).
J.

DPAFT

!3)

wtiere I. I ~eno~es the USUal Euclld~an ncrm lrld-:~ace

The krlglng Droblem IS to estimate some functional f(Z] conditional on

the o~servatlons z TyGlcal functlonals ar~ slm~ly the lclentlty evaluated at

a Dclnt xo (lnterDolatlonl or integrals cf Z ever a volume centered at x~
(~lock estlmatlon). Estimators of E { f(l) 1 Zlxl } are restricted to be--
llnear in tne aatdm 1 e.. co be of the form

[4]

In adaltloa. th~ krlglng algorlttim ~rcwla~s an estimate cf

have d Dest (In the sense of mlnlmlzlng (5)) Ilnear unblasea solution f~. and
.

the usual krlglng -T such that fT ■ ‘ ;T . z ‘m togetnerdlgcrltnm comDuteS >

“2wltn the assoclaLed CT In ~ractlce. of cGurse. K 1$ unkntjwn and must be eS-

timate~ from the aata. and tti~ USu~l ~rCceaure 1S KO use thlS e~tlmate K in

~lace Gf K in the krlglng eauatlons tc Obtain a suGoDtlmal SGlutlOn ;K (Wltn

-2_elgnts ~.K) and Ok

UnfortunatPlym tne estimation of the geaerallzed covarlance function K

1s tllgllly rcblematlc There have been numerous efforts In rOCOnt years to

lmPrGve on the methcd cf Delflner [1979] -Filch was critically revletied Clj

ZKarks and Fang (1982) These lncluae effGrts dt m?klng the ~roceaure more

robust against non-normallty of tne aatd ~see for example ‘he alscusslon by

Armstrong. 1984bI and some other tyDeS of dDDraIJChOS (0 g KltanldlS. 1985)

Ne,erLh~less . all methods slmulatea by tnls author are BlafJuf!d Bj problems Gf

Elas and large “arlabllltf. ●ven within an unrealistic slmulatiol framework

wrlerc Lhe fc,rm C,f the Lrue f,,r,CtlGn 1s knG#, aria Correct Iy mcaelcd Under

-5-
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tnese circumstances. additional effort to cjuantlfy the error Introduced by lm-

Derfect modcllng seems worthwhile

A nEvIEu OF THE BCIOT5TPAF

A readable introduction LO the BooLstraD 1s prGvlaea EIY Efro~ and

Tl~shlr~nl (1986). The llteratur~ on tn~ subject has grown raDlaly since ltS

lnLrOauCtlOri DV Efron (15791. and Wlaestiread appllcaclon has nardly awaltea

cne establlsnment of more formal underDlnnlngs sucrI as Dro.lded by Blckel and

Freeeman, 1981.

TnE B6SIC laea of th~ EoGcscrd~ 1s .erj slmDle LEI dlyl be an estimate

Gf a Darame~er [or Parameters) ~[FJ (Here I em~loy the no~atlon of Efrofiana

TIDsnlratllm 1986-1 Tnls means that there 1s a well aeflnea algcrl~hm for com-

Dutlng EJ. gl<en cbseriatlws ~ g~nerated b, a stcctiastlc mecnanlsm F

charficterlze~ LJ unknc.~~ p~rame~er[~] ~ Tne atiallable c~serwatlons y ar~

uses to gener~te an em~lrlcal estlmat~ F c.= F [which can De. fc.r exam~le. ttie

u~u~l fiGn-par~me~rl~ cmDlrl~fii alstrlbuclon fu~ctlcin. 5 smcu~hed ●erslcn cif
.

this. or some parametric f~rml SlmLiatlcfi frcm F lS Uses tG evaluat~ tne

~ro~ertles of the estlm,at~r 3 sDEclflcallJ.

(eacn 1s callecl a bootstrap sample. denotes by

pllea tc compute 6JIJ*) rFlfty to t-o hunarea

reconwnenael. but mwe are needea fw ccmbutlng

.-~nacm samples are ariwn from F

2=) and the algorltnm 1s ap-

Dcctstrap samDles are sometimes

DootstraD~ea c;nfldence inter-
.*

,al~ 1 [ne sample statlsrlcs of the @(: ) are then ~sea to pstlmdte the

cQrre;Eonalng propertle~ of tne orlglnal es?lmator @(i] For example. the

#iere E- ;[/=] 1s approximated
F

Standaml error 1s approximated Bj

~he boots~rapG~d .alue~

(61

D= the ,ml=anof tne Dootstrapped values The

the sauare roo: of the samGle variance of

For tne case of ~naeDendently. identically distributed obserwatlon~ ~

TrGm ~r, unknown al:t:l~utl~n F LI,E abc.e Prcgrdn ,5 easllj carr,ea out For
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observations qenerctm LJ a more campllcat~a moael , Sucrl as a regression

model . modlflca~lons are needed tG transform y to a nomlndlly 1 l.d set of
.

random variables so chat an em~lrlcal F may DE com~utea. ~lmllarly. when Lne

observations are generarea tijfin ln~rlnslc ranaom funCKlon (lnclualng Khc DoS-

Slblllty of non-constant arlft] a met?oa for red~clng the ci2rrelated

obs~rvatlons ;(zI Lo an aDDroxlmatel~ 1 l.a samGle must be found TnlS 1S of

course e~~ctlj the same Droblem faced in tne orlglnal wor~ cf Matheron (19731.

aria the re~son for introducing the notion of k-lncrement~. ~etall~ fOr the

Dresent DroDlem w1ll DIE gltien in the fclloulng section.

A s~cona questlcn tG be answerea In ttie Dresent context 1s. what

parameter(s) stioula be Dcotstrappecl> AS Dlamona ana Armstrong [1984) observe.

lt 1S not tne estimate Gf the general l~ed covarlanCe function K[h) whlcn 1S Gf

lntere~~m SC. mucn a; tr.~ effect Gf mlsSG~clflcdtlan of thlS function on

Pr~alctlon alg~rltnm~ sucn tis the krlglng algorlc~m :n t~ls connection lt 1s

z*(x) [at the orlglnal oDservatlon pc.lnt ~1 ana the DrescrlbEa estimation Dro---
.-=

ceaur~ Will be Uses K[: Ito obtain - Then the usual krlglng algcrlthm

In Dart the ~rGc~aure just aescrlDecl w1ll be assessing a Eartlcular al-

gorlthm ‘c- obtalnlng K Clearlj a reaulrement for sucn an algorlthm in the

present con~ek~ 1s that lt De completely automatic. methods whlCh rely on

qra~lil~al interact’on =lth che user are lm~ractlcal In tnls ~aper Kltanldls

(1985] ‘“mlnlfnum-var ldnce Cstlmator 1s Uses. constralnea by auadratlc Drogram-

mlng to Drcvlde ~csltl~~-deflnlte estimates [Thus constrained the estlmatur

Js no lGnger unbiased. of course; in fact simulation suggests conslderatile

~l~s ] TrIIs estlmarcr reaulres a Drellmlnarj EStlmat~ of K. fr~m uhlcli the

dlgorlrnm can Ije aDDllerj lteratlvElj tG I’Io.e K@dard5 the SC.lutlOn K. wnlCh 1S

1---



methca [1979). ana slmulatlcin ●x~erlefice sugg~sts that ccn.ergence Is fdlrlj

r~~la. five iterations generall~ estlmat~s Ine flxea Dclnt LG tnre~ or four

slgnlflcant figures In crckr to mlnlmlze computation In th~ nested slmula.

Klon fram~wcr~ of this Stuay. hGwever, tn~ algcrlchm IS .tarted -lth G

ccnstant Inltlal esLlma~e. fellowed By a single StED ~owaras the fl~ea ~olnt

Ttie Dolnt 1S that the ~~otstra~ tecnnlaue descrlbea Delow can slmllarly be

used to evaluate any automatic algorltnm

BOOTSTRAPPING A k-lpF

SGIG-’ (1985] ~reatea t~~ slmDles~ case of an lntrlnslc ran~om functlcn.

namels a statlcnarj prccess (fcr uRlch the cmdltlcn lnclualng Ea. ill holas

for ~ m~aSures a -ltn ccm~act SuEDO”t. this 1s sam~~lm~~ called an lntrlnsl~

random function Gf oraer -1. J The mean 1S assumea to tje zerc (In Dractlce.

Dly that tney are ln~epenaently identically alstrlDuLedm -lthout aadltlonal

assumDtlons of normallty ) The unkncwn C IS reDlacea by an estimate C = GT .

and --1
.

U(I] = + Z(X) 15 uses to g~nerate an em~lrlcai alstrlbutlon function F-- --

function of order greater tnan or eaual to zero. Decause now there 1s. in aa-

altlcn tc C~rrelatlGn among the obsertia~lons. the Dossl~llltv of unKnG_n

Ilcljnomlal drift. so the sample ccwarlance matrix of cne observations ; c~n

nGt be e~tlmatea directly The soIutlGR, Gf course. 1s to work With k-

lncrements a suDDortea on th~ o~ser.atlon points x If there are N

GESertatlGn lj~lnts. tn~n there are M ❑ N - Clk-a.k) llnearly lnde~endent k-

lncrements supportea on X. wnere ~(m.m” I denotes the Dlnomlal COefflClent. the

numh~r c.f W6JS of 5ElEctlng sut.s~ts of size m fr~m a 5Et C,f 51:E ml Let gl

-8-



. gM be M llnearly lndEDendent k-lncrem~ntS Let A aenote tn~ MxF4

~h .-
Mii~rlI whose [lmJ) ~lem~nt 1s the J‘“ element [coefflclentl of g,. Let K be

th~ estimate of the generdllzea coiarlance functlcm based cn th~ orlglndl data

:(11. and estimate the MxM covarlanie matrix wl~h-- “ements CIJ =

tov { “gl.~~. ‘g..~~ } DY using K in Ea [3) FJOW. following 5G1OW. factor t

.*

= ~T ana comDute ~ = -~-l(Az) Kc c~taln M ap~roxlmatel, lnaeDendenK ana laen-

tlcall~ alstrlbuted ranaGm war laDleS U. These are used LO generate al

em~lrlcal alstrl~utlon func~l~n F

SOME ;lMULfiTI~FJ PE2uLTS

The remarks In Lhls Section are basea on a simulation stuay consisting

of one hundred simulations of a first-orae,- IRF With generallzea covariance

functlm K[h] s -1o1111.Thlrtji obs~r.~tl~n~ -er~ genera~e~ for ea~h Slmula-

tlon. at the Dolnts x
1.

. ;hc_n‘j~ In Flgur~ 1 Wltti solla Svm~ol~ The

form of the ICltanldls algerlthm ~reflcujl: aesclbea bas used KG estimate the

three Parameters Gf th~ general m~a~l

K(li] = co zff~l - bllnl - b31h13. [?1

(wnere ~ 1s the delta function). starting the lteratlon with c ❑ 0.0 ‘1=1
~na D. = ~

J
(AS Kltdnldi: ~bsert~s lfi hls 1985 paDer. what counts in tne

selectlon of the Inltlal estimate 1s the r~tl~ of the coeffltlents. so in fact

the correct ratio 1s Offered as a starting PGlnt Tnls dGes not keeD the al-

gorltnm from converging raDldl~- to lts blasea flied D@lnt. nowever. J The

Cowtirldnce ihatrlx of twenty-Sewen k-increments A:. ~stlmatea using K. was fdc-

tcrea and rwentj-sewen aDwGllmately lnd~~enaent an~ laenrlcallv dlstrl~uted
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numbers ~ were computed as described above. The usual empirical distribution

function, with mass 1/27 at e,ch of these points, was used for ~, and one

hundred bootstrapped samples ?* were generated from ~ for each simulation.

The same Kitanidis algorithm applied to each Z* yielded a bootstrapped es-
/.*

timate K .

The functional of ~ that were considered were simply f(Z) = Z(xp) at

the five points F = A. B, C, D and E shown in Figure 1 with open symbols.

Point A is very close to one of the data points, B and C are surrounded by ob-

servations, D is O!i-Iypartly surrounded, and E is well outside the observed

area. For each point the following quantities were computed:

?T, ~~, using the known true generalized covariance function K;

; K, ~~, using the estimated generalized covariance function t;

and one hundred values of

A* , ‘7
f, using the bootstrapped generalized covariance functions ~*.

(All thirty observations were

As observed previously,

coefficients in Eq. (7) must

used in the kriging equations. )

the constrained Kitanidis algorithm (all of the

be non-negative) is not unbiased, Figl

histogr~m of the one hundred simulated values of the nugget effect

range up to 13.3 and only about half are at or very close to zero, ‘

coefficients bl are shown in Figure 3; they have an average value of

re 2 is a

co; they

he linear

about 8.

and include some zeroh. This bias actually has very little effect on ?K,

which in most cases is very close to ~T, as shown in Figure 4 for point C.

The effect on ~~ 1s more substantial (Figure 5); the algorithm has a downward

bias.

As an estimate of bias, however, the natural bootstrapped estimate

—.

if = ?* - iK ior Br = ;K - $, (8)

-1o-
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where the bar denotes the average over all bootstrap samples, is not very

satisfactory. When Bf is practically zero, ;t is often relatively “large;when

‘f ‘s significantly different from zero, ~f is as likely as not to have the

wrong sign (indeed, w likely when the estimation point is farther from the

data points). Typical is Figure 6, a plot of ~f vs. Bf at point C. It might

be thought that this apparent arbitrariness of sign is due to the influence of

a few extreme values in the distributiort of bootstrappeci values; some

bootstrap distribution, such as the one in Figure 7, have long tails or other

non-normal behavior (which might be traced to the presence of a single outlier

in the data whose influence on a handful of bootstrap samples hiippens to be

large) . However, if the median of the distribution is used in place of the

mean in (8), the result is generally an estimate of bias that, although small

in magnitude, is of the wrong sign (Figure 8), so a more robust estimate of

the center of the bootstrap distribution is of little help.

On the other hand, ~ defined by0’

seems to be negative almost every instance, regardless of the sign of Bo; see

Figure 9. This is a reflection of the bias of the algorithm remarked in

Figure 4; just as simulation underestimates the true value on the average, so

the bootstrap simulation underestimates the kriged value.

Thus it appears that at least for this problem bias estimation is

problematical. and bias “correction” (i.e., subtracting t4e bias estimate from

the kriged estimat:) decidedly inadvisable. This agrees with a remark by

Efron and Tibshirani (1986; p. 61).

More interesting is the question of the increase in variability in the

kriged estimate as a result of using an estimated generalized covariance func-

tion, Confidence intervals for ?T and ~~ can be constructed for each

simulation, and their predicted coverage compared with the observed coverage

in the one hundre,: trials. One hundred bootstrap samples are considered in-

sufficient to construct good confidence limits, according to Efron and

Tibshirani, They recommend a minimum of 250 samples for the percentile method

(described below), and 1000 samples for the more complicated bias-corrected

percentile methods. These sample sizes dre impractical in a simulation of

-11-
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this size. Nevertheless, some interesting observations emerge even with the

smaller bootstrap samples used here.

The first method for constructing confidence intervals is called the

percentile method (Efron and Tibshirani, 1986; Efron, 1982). Here a symmetric

100(1-27)% confidence interval is constructed simply by taking as endpoints

the Jh and (l-y)th quantiles of the empirical distribution of the

bootstrapped values of the statistic in question. Table I shows the actual

coverage of the one hundred 90% confidence intervals constructed using the

percentile method for each of the estimated quantites, together with the num-

ber of simulations for which the optimal value (l,e., ?T or ~~) fell below or

above the computed confidence interval. The confidence intervals for ?T are

extremely conservative, attaining at least 97% coverage at all five points,

whereas confidence intervals for ;; are somewhat liberal and markedly nonsym-

metric.

One problem may be that tk,equantity bootstrapped was not approximately

pivotal (see Hinkley, 1986), although the use of the logarithm of 02 was an

attempt to move closer to a pivotal quantity for this scale parameter. The

second me+hod for computing confider?ce intervals ?s a fairly automatic tech-

nique for correcting this problem (see the argument in Efron, 1982, p, 83).

This “bias-corrected” percentile method involves making an adjustment for the

fact that ?K or ~~ is not the median of its bootstrapped distribution.

Table 2 shows the coverage of bias-corrected 90%-confidence intervals, The

bias-corrected confidence intervals are now liberal for the point estimates
,\

‘T’ but fairly symmetric with respect to f~ilures on the low and high sides.

Failures, unsurprisingly, are associated with poor bias estimates. Bias-

corrected confidence intervals for the kriging variance ~~ have about the same

coverage as percentile-method intervals and failures are slightly more sym-

metric, although the computed intervals still tend to be too low, The blas-

corrected intervals are also five to ten percent narrower than intervals

computed by the percentile method.

A third method for constructing confidence intervals mentioned by Efron

and Tibshirani is a modification of the bias-corrected percentile method which

uses an estimete of skewness based on the bootstrap distribution, As

-12-
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bootstrap distributions are ‘frequently highly skewed, this further adjustment

“2might correct the observed asymmetry of faiiures for the intervals for UT.

More bootstrap samples smooth out the bootstrap distributions con-

siderably and improve the estimation of tail percentiles, and especially the

estimation of the percentile of the kriged value that plays a central role in

the bias-correction method. Rarely, a significant shift in the computed con-

fide~ce interval can result, but more typically there is little change, as

shown in Figures 10 and 11.

RANDOMIZATION

The reader may have noticed that there are a number of points in the

procedure described above where arbitrary choices are made: in the selection

of A (i.e., of M linearly independent k-increments), in the choice of a

general

unitary

zzd inverse A-, and in the factorization of ~, because if U is any

matrix, UUT= I, then

The cho

t = iuuTiT = i’i’T, (9)

ce of a genera’ ized inverse is immaterial because if AT is

of A, then A+(A~)* differs from A-(A~)* only by aanother generalized inverse

polynomial of order k, and the algorithm for estimating K(h) should produce

the same result using either ~*, Also, if B is another MxN matrix of linearly

independent k-increments, then B = QA for some non-singular MxM matrix Q, and

if ;A ❑ tiT, where ~A is the estimated covaria:lce matrix of Az, then ~B u

~~TQT, If this factorization of ?B is used, then ~ = i-lQ-l(QA~) ■ ~-l(A~)

as before, However, an alternative choice of the factorization will result

in a different vector g and a different ?,

The m~gnitude of the effect of the choice of factorization was inves-

tigated using a small simulation study and found to be comparable to the Monte

Carlo sampling effect inherent in basing estim~tes on a finite number of

bootstrap s~mples from ~, Therefore it might be neglected, However, it might

~lso prove usctful, At the expense of a slight increase in computation, ran-

domization of factorization can be ~chleved by generating random unitary

-13-
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matrices U for Eq. 9 and redefining y =(&l)-l(A~) for each bootstrap sample,

or, more reasonably, for each set of perhaps te- samples. The principal ef-

fect of this modification appears to be a widening of the bootstrap

distribution and thus of high-content confidence confidence intervals; compare

Figures 11 and 12, In this instance the upper end of the 90% confidence in-

terval was shifted just enough to cover the “true” value ~$,

SUMMARY

The Matheronian theory of k-increments as a tool permitting the estima-

tion of the generalized covariance function of an intrinsic random function

from a single realization has been applied here to reduce the observations

from a single realization to an approximately i.i.d. collection of linear com-

binations of the observations. These can be resampled to generate new sets of

“bootstrapped” observations, which can be used to repeat the estimation proce-

dure. According to bootstrap theory, the distribution of the resulting

bootstrapped estimates (be they the parameters of the estimated generalized

covariance function itself or functional of the estimated process such as

kriged interpolations, block estimates or kriging variances) should ap-

proximate the corresponding true distribution, and thus provide a n,ll.

parametric way to estimate such measures of error of the original estimator as

bias or standard ei’ror, as well as generating confidence intervals for them,

Qualitatively, the simulation results reported here support this theory,

at least insofar as suggesting that the spread of the bootstrap distributions

does indeed reflect the variability introduced by imperfect estimation of the

generalized covariance function required for kriging, Bias estim,ltion is un-

reliable, but bias-corrected confidence intervals are only ~lightly narrow,

considering that the sir,lul~tionsused only one hundred bootstrap samples per

$imulation, compared to the minimum of one thousand recorrnnendedfor this par-

ticular type of computation, The arbitrariness of one step of the procedure,

namely the choice of factorization for the covariance matrix of the k-

increments used, might profitably be exploited to widen the computed

confidence intervals slightly,

-14-
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TABLE 1.

?B at:

~: at:

COVERAGE OF NOMINAL 90% CONFIDENCE INTERVALS FOR ?B AND j:

CONSTRUCTED BY THE PERCENTILE METHOD (100 SIMULATIONS)

A
B
c
D
E

A
B
c
D
E

BELOW
INTERVAL

WITHIN
INTERVAL

99
99

100
99
97

95

;:
84
92

ABOVE
INTERVAL

1

:
0
3

1!
15
16
8

MEDIAN
WIDTH OF
INTERVAL

.765
,431
.417
,407

1.455

1.396
.414
.413
.416
.489
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TABLE 20 COVERAGE OF NOMINAL 90% CONFIDENCE INTERVALS FOR ~B ANO ;:

CONSTRUCTED BY THE BIAS CORRECTED PERCENTILE METHOD

c
D
E

BELOW
INTERVAL

9
8
7
7
7

17
2
3
3
2

WITHIN
INTERVAL

81
88
86
84
90

ABOVE
INTERVAL

12
6
2
7

11

2
10
11
13

8

MEDIAN
WIDTH OF
INTERVAL

.440
,327
.335
.410

1.380

1,276
.389
,378
.378
,455
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Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig,

Fig,

Fig,

Fig,

Fig,

Fig,

1. Thirty “observation” Po+n+s used in the simulations are shown using
solid symbols. Kriged estimates are computed at the five labeled points
shown by open symbols.

2. Histogram of one hundred estimates based on simulated data of the
nugget effect, CO. The true value. used to generate the simulations, was
zero.

3. Histogram of one hundred estimates of the coefficient of the linear
term, bl. The true value was 10.

4. Histogram of one hundred values of the bias ?K - ?T of the estimate
at point C.

5. Histogram of one hundred values of the bias log ~~ - log ~~ of the
kriging variance at oint C,

6. The bootstrapped bias of the point estimate, computed as the average
A

of ;*- fK over one hundred bootstrap samples, vs. the actual bias ?K - ?T
at point C.

7. Histogram of the bootstrap values ?“ at point B for une simulation,

The optimal value ~T and the original kriged value ~K are shown as heavy
lines.

8. The bootstrapped estimate of the bias of the point estimate, computed
4

as the median of ;* - fK over one hundred bootstrap samples, vs. the ac-

tual bias ;K - ?T at point C.

9. The bootstrapped estimate of the bias of the kriging variance, com-
A2* ‘~

putcd as the average of log o - log OK over one hundred bootstraP

the actual bias log ~~ - lo9~~ at point Cosamples, vs.

10. Histogram of one hundred bootstrapped values of the kriging variance
at point C for one simulation. The same factorization of the covariance

matrix was used throughout, ;2

J
and ~~ are shown as solid lines, and the

boundaries of the bias-correcte 90% confidence interval are shown as
dashed lines.

11! Histogram of one thousand bootstr~pped values
variance at point C for the same simulation illustral
The same factorization of the covariance matrix whs used
sample,

12+ Histogram of one thousand bootstrapp~d v~lues
Valance at point c for the same simulation illustrated
11, A different, randomly selected factorization of
matrix W6S used to generate each sample.

of the kriging
ed in Figure 10,
to generate each

of the kriging
n Figures 10 and
the covariance
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